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Abstract.

We present the structure of the axisymmetric force-free magnetosphere of an aligned
rotating magnetic dipole, in the case in which there exists a sufficiently large charge
density (whose origin we do not question) to satisfy the ideal MHD condition, E -B =
0, everywhere. The unique distribution of electric current along the open magnetic
field lines which is required for the solution to be continuous and smooth is obtained
numerically. We expect that our solution will be useful as the starting point for detailed
studies of pulsar magnetospheres under more general conditions, namely when either
the force-free and/or the ideal MHD condition E. B = 0 are not valid in the entire
magnetosphere. Based on our solution, we consider that the most likely positions of
such an occurrence are the polar cap, the crossings of the zero space charge surface by
open field lines, and the return current boundary, but not the light cylinder.

I INTRODUCTION

We present a summary of the solution of the exact structre of an axisymmetric

pulsar magnetoshpere. The original work where this solution and the associated

details are presented is [1]. The interested reader is encouraged to look at the details

given in this work. The basic physics of this problem were given by [2], roughly

thirty years ago. The discovery of radiation emission from radio to gamma-rays

with the pulsar period has motivated the modification of the original GJ model

to include features, such as charge gaps, which would lead to the acceleration of

particles necessary to produce the observed radiation.

The ubiquitous presence of high energy radiation from pulsars, in agreement with

simple scaling laws [3] which make no particular demands on the magnetic field

structure, has prompted a number of authors to suggest that the _/-ray emission

results from an unavoidable violation of the assumption of strictly dissipation-free

flow, which 'would lead to singularities in both the flow and the magnetic field, oc-

curing a short distance beyond the light-cylinder' [4]. Based on the conviction that

such singularities might simply reflect the shortcomings of our numerical methods



and not the physical path nature chooses, we have decided to investigate the issue

ourselves.

II THE PULSAR EQUATION

We work in ideal MHD conditions, i.e. E • B = 0 over length scales much larger

than the size of the various 'gaps', and that the main stresses in the magnetosphere

are magnetic and electric and a valid magnetospheric model will be one where

1j. x B + p,E = 0. (1)
C

Here, J, B, and E are the electric current density, magnetic and electric fields

respectively and pe = V. E/(47r).

A convenient approach in steady-state axisymmetric MHD is to work with the

flux function 9 defined through

v9× (2)
Sp--= R '

where, Bp is the poloidal (R, Z) component of the magnetic field in a cylindrical

coordinate system (R, ¢, Z). Magnetic field lines lie along magnetic flux surfaces of

constant 9. At each point, 9 is proportional to the total magnetic flux contained

inside that point; it is also related to the ¢ component of the vector potential. Ideal

force-free MHD requires that

A(9) (3)
Be = R '

where A(9) is a yet to be determined function. The poloidal electric current

I - cA�2 is also a function of 9, which means that poloidal electric currents are

required to flow along (and not across) flux surfaces. Finally, the electric field is

given by

E = Bf_BD x ¢, (4)
C

and is clearly perpendicular to B. f_ is the angular velocity of rotation of the neu-

tron star on to which the magnetosphere is anchored, and can directly be thought

of as the angular velocity of rigid rotation of the magnetic field lines (not of the

magnetospheric plasma!). Eq. (1) can now be written in the equivalent form

(1-x 2) \ _ z Ox + Oz 21 - -_x = -R2LcAA' ' (5)

where we have introduced the convenient notation x =_ R/RLc and z -- Z/RLC,

with RLC = c/f_ the distance from the axis where a particle corotating with the star



would rotate at the speedof light (the socalled 'light cylinder'); and (...)' = d/dk_.
Eq. (5) is the well knownpulsar equation [5]. Solutionsto this equation havebeen
found for specificfunctional forms of the current distribution A(_) in particular

for A = const, and A = -2k9 for which this equation becomes linear and the usual

techniques can be applied to derive the form of the field geometry for x _ 1, as well

as for a quadratic form of A(k9) corresponding to a magnetic monopole solution

[5,6].

Eq. (5) is elliptic, and according to the theory of elliptic equations (albeit the

linear ones), the solution at all z and z is uniquely determined when one specifies

the values of either k0 (Dirichlet boundary conditions) or the normal derivative of

k0 (Neumann boundary conditions) along the boundaries, i.e. along the axis x = 0,

the equatorial plane z = 0, and infinity (as one expects the boundary conditions at

infinity will not affect the solution near the origin and the light cylinder). Unfortu-

nately, this procedure does not work since eq. (5) is singular at the position of the

light cylinder x = 1. The singularity at x = 1 imposes the important constraint
that

(6)

at all points along the light cylinder, and as a result, not all distributions of electric

current along the open field lines A = A(_) will lead to solutions which cross the

light cylinder without kinks or discontinuities. In fact, there ezists a unique 2?)

distribution A = A(kg) which allows for the continuous and smooth crossing of the

light cylinder.

One sees directly that eq. (6) has precisely the form of a boundary condition along

the light cylinder which allows for the solution of eq. (5) inside and outside the light

cylinder. In other words, eq. (6) determines the normal derivative of k_ along the

light cylinder, when A = A(_) is known, which can be used to solve the original

elliptic equation both inside and outside x =: 1. The inside solution will yield the

distribution of kg(x = 1-, z), the outside solution the distribution of k_(x = 1 +, z),

and in general, _(x = 1-,z) will not be equal to k_(x = l+,z), unless of course

one is 'lucky enough' to try the correct distribution of A(k9). Several unsuccessful

attempts to solve eq. (5) in all space, have concluded in favor of the 'inevitability

of the break-down of continuity and smoothness' of these solutions.

Motivated by the fact that the singularity at the light cylinder is none other

than the relativistic unique generalization of the familiar Alfv6n point Of the non-

relativistic theory, we were more optimistic in that such a continuous and smooth

solution actually exists.

We chose some (any) initial trial electric current distribution and solve the prob-

lem both inside and outside the light cylinder, and thus obtain the two distributions

• (x = 1-, z) and kg(z = 1+, z) along the light cylinder, which in general differ. We

correct for the distribution of A(_) along field lines which cross the light cylinder

by an average of the 'in' and 'out' values and we repeat the procedure until these

'in' and 'out' values of AA'(k9) become identical.
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FIGURE 1. The final numerical solution for the structure of the axisymmetric force--free mag-

netosphere of an aligned rotating magnetic dipole. Thin lines represent flux surfaces in intervals

of 0.1_p¢, with @ = 0 along the axis. A small amount to return current flows between the dashed

field line @ = 1.08@p¢ and the thick line at _open = 1.36@p¢. The null line, along which pe - 0,

is shown dotted.

Figure 1 presents the results of the numerical solution outlined above. Nothing

special happens at the light cylinder. The field lines cross this surface smoothly and

so does the fluid. The dotted line is the zero charge surface of Our solution. The

sign of charge of the plasma necessary to short out the component of the electric

field parallel to the magnetic field changes as one crosses this line. The point to

note is that this (the zero charge) line crosses open field lines. Because plasma

outflows only along the open field lines, the change in the charge sign implies the

presence of charge sources along this dotted line. This source is likely to be due to

pair production of high energy photons, or the acceleration of electrons which will

result in the production Of pairs by the same process. We therefore think it likely

that this region of the magnetosphere will yield high energy pairs and possibly the

observed 7-rays that seem to accompany the pulsar emission.
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